Identification and Characterization of Noncovalent Interactions That Drive Binding and Specificity in DD-Peptidases and β-Lactamases
نویسندگان
چکیده
Bacterial resistance to standard (i.e., β-lactam-based) antibiotics has become a global pandemic. Simultaneously, research into the underlying causes of resistance has slowed substantially, although its importance is universally recognized. Key to unraveling critical details is characterization of the noncovalent interactions that govern binding and specificity (DD-peptidases, antibiotic targets, versus β-lactamases, the evolutionarily derived enzymes that play a major role in resistance) and ultimately resistance as a whole. Herein, we describe a detailed investigation that elicits new chemical insights into these underlying intermolecular interactions. Benzylpenicillin and a novel β-lactam peptidomimetic complexed to the Stremptomyces R61 peptidase are examined using an arsenal of computational techniques: MD simulations, QM/MM calculations, charge perturbation analysis, QM/MM orbital analysis, bioinformatics, flexible receptor/flexible ligand docking, and computational ADME predictions. Several key molecular level interactions are identified that not only shed light onto fundamental resistance mechanisms, but also offer explanations for observed specificity. Specifically, an extended π-π network is elucidated that suggests antibacterial resistance has evolved, in part, due to stabilizing aromatic interactions. Additionally, interactions between the protein and peptidomimetic substrate are identified and characterized. Of particular interest is a water-mediated salt bridge between Asp217 and the positively charged N-terminus of the peptidomimetic, revealing an interaction that may significantly contribute to β-lactam specificity. Finally, interaction information is used to suggest modifications to current β-lactam compounds that should both improve binding and specificity in DD-peptidases and their physiochemical properties.
منابع مشابه
Interactions of “Bora-Penicilloates” with Serine β-Lactamases and DD-Peptidases
Specific boronic acids are generally powerful tetrahedral intermediate/transition state analogue inhibitors of serine amidohydrolases. This group of enzymes includes bacterial β-lactamases and DD-peptidases where there has been considerable development of boronic acid inhibitors. This paper describes the synthesis, determination of the inhibitory activity, and analysis of the results from two α...
متن کاملIdentification and Characterization of Metallo-β-Lactamases Producing Pseudomonas aeruginosa Clinical Isolates in University Hospital from Zanjan Province, Iran
Background: Infectious by Pseudomonas aeruginosa has spread worldwide and metallo-beta-lactamases (MBL) are being reported with increasing frequency. The aim of this study was to investigate the antibiotic susceptibility and distribution of blaVIM and blaIMP genes in P. aeruginosa isolates from Zanjan Province of Iran. Methods: A total of 70 P. aeruginosa isolates were identified from patients ...
متن کاملKinetic study of interaction between BRL 42715, beta-lactamases, and D-alanyl-D-alanine peptidases.
A detailed kinetic study of the interactions between BRL 42715, a beta-lactamase-inhibiting penem, and various beta-lactamases (EC 3.5.2.6) and D-alanyl-D-alanine peptidases (DD-peptidases, EC 3.4.16.4) is presented. The compound was a very efficient inactivator of all active-site serine beta-lactamases but was hydrolyzed by the class B, Zn(2+)-containing enzymes, with very different kcat value...
متن کاملCharacterization of β-Lactamases from Urinary Isolates of Escherichia coli in Tehran
Knowledge of antimicrobial resistance patterns in E. coli, the predominant pathogen associated with urinary tract infections (UTI) is important as a guide in selecting empirical antimicrobial therapy. Methods: To describe the antimicrobial susceptibility of E. coli associated with UTI in a major university hospital in Tehran (Iran), seventy-six clinical isolates of E. coli were studied for susc...
متن کاملAmino acid sequence of the penicillin-binding protein/DD-peptidase of Streptomyces K15. Predicted secondary structures of the low Mr penicillin-binding proteins of class A.
The low-Mr penicillin-binding protein (PBP)/DD-transpeptidase of Streptomyces K15 is synthesized in the form of a 291-amino acid-residue precursor possessing a cleavable 29-amino acid-residue signal peptide. Sequence-similarity searches and hydrophobic-cluster analysis show that the Streptomyces K15 enzyme, the Escherichia coli PBPs/DD-carboxy-peptidases 5 and 6, the Bacillus subtilis PBP/DD-ca...
متن کامل